In Situ Growth and Coalescence of He-filled Bi-dimensional Defects in Si by H Supply Original Citation in Situ Growth and Coalescence of He-filled Bi-dimensional Defects in Si by H Supply

نویسندگان

  • E. Oliviero
  • S. E. Donnelly
  • J. A. Hinks
  • M. F. Beaufort
چکیده

In this work, ion implantations with in situ transmission electron microscopy observations followed by different rates of temperature ramp were performed in (001)-Si to follow the evolution of He-plates under the influence of hydrogen. The JANNUS and MIAMI facilities were used to study the first stages of growth as well as the interactions between co-planar plates. Results showed that under a limited amount of H, the growth of He-plates resulting from a subcritical stress-corrosion mechanism can be fully described by the kinetic model of Johnson-Mehl-Avrami-Kolmogorov with effective activation energy of 0.9 eV. Elastic calculations showed that the sudden and non-isotropic coalescence of close He-plates occurs when the out-of-plane tensile stress between them is close to the yield strength of silicon. After hydrogen absorption, surface minimization of final structure occurs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Au-mediated low-temperature solid phase epitaxial growth of a SixGe1-x alloy on Si(001)

The evolution of microstructure during Au-mediated solid phase epitaxial growth of a SixGe12x alloy film on Si~001! was investigated by in situ sheet resistance measurements, x-ray diffraction, conventional and high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy, and Rutherford backscattering spectrometry. Annealing amorphous-Ge/Au bilayers on Si~001! to tempe...

متن کامل

In Situ Formation of SiC/CNT Ceramic Nanocomposite by Phenolic Pyrolysis

In this research, using pyrolysis of phenolic resin in the presence of silicon particles, the SiC ceramic composite is formed. The samples were prepared by introducing 30, 35, 40, 45 and 50 wt% of Si particles to the phenolic resin. The samples were cured at 180°C then carbonized at 1100°C. The final carbonized C/Si composites are hot-pressed at 1500°C in inert atmosphere, which is more than th...

متن کامل

Growth mechanisms in GeÕSi„111... heteroepitaxy with and without Bi as a surfactant

We compare the initial stages of growth of Ge on Si~111! with Bi as a surfactant and without surfactant. At the beginning of growth, three-dimensional islands with a strain relieving dislocation network at their base are formed in both growth systems. These islands can be regarded as seeds of a flat relaxed Ge layer on Si~111!. However, such Ge layer forms at later stages of growth only in the ...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Mathematical Modeling of Contaminated Soil Bioremediation Bases on Convection Dispersion Phenomena

A mathematical model has been analyzed for in-situ bioremediation with the purpose of remediating organic contaminated soil. Oxygen rich water when passed through the porous media of soil activates the aerobic microorganisms, leading to the biodegradation of the organic content. The model equations comprise three convection-dispersion partial differential solution of these equations has been co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015